Second-order ergodic theorem for self-similar tiling systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Ergodic Theorem for Self-similar Tiling Systems

We consider infinite measure-preserving non-primitive selfsimilar tiling systems in Euclidean space R. We establish the secondorder ergodic theorem for such systems. The speed of convergence is determined by the Hausdorff dimension of a graph-directed set associated to the substitution rule.

متن کامل

Self-Similar Polygonal Tiling

The purpose of this paper is to give the flavor of the subject of self-similar tilings in a relatively elementary setting, and to provide a novel method for the construction of such polygonal tilings.

متن کامل

Self-Similar Tiling Systems, Topological Factors and Stretching Factors

In this paper we prove that if two self-similar tiling systems, with respective stretching factors λ1 and λ2, have a common factor which is a non periodic tiling system, then λ1 and λ2 are multiplicatively dependent.

متن کامل

Order-type existence theorem for second order nonlocal problems at resonance

‎This paper gives an abstract order-type existence theorem for second order nonlocal boundary value problems at resonance and obtain existence criteria for at least two positive solutions‎, ‎where $f$ is a continuous function‎. ‎Our results generalize or extend related results in the literature and give a positive answer to the question raised in the literature‎. ‎An example is given to illustr...

متن کامل

Self-Similar Corrections to the Ergodic Theorem for the Pascal-Adic Transformation

Let T be the Pascal-adic transformation. For any measurable function g, we consider the corrections to the ergodic theorem j−1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2013

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2013.27